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ABSTRACT
HYDRA is used to simulate a variety of experiments carried
out at the National Ignition Facility (NIF) [4] and other high
energy density physics facilities. HYDRA has packages to
simulate radiation transfer, atomic physics, hydrodynamics,
laser propagation, and a number of other physics effects.
HYDRA has over one million lines of code and includes both
MPI and thread-level (OpenMP and pthreads) parallelism.

This paper measures the performance characteristics of
HYDRA using hardware counters on an IBM BlueGene/Q
system. We report key ratios such as bytes/instruction and
memory bandwidth for several different physics packages.
The total number of bytes read and written per time step is
also reported. We show that none of the packages which use
significant time are memory bandwidth limited on a Blue
Gene/Q. HYDRA currently issues very few SIMD instruc-
tions. The pressure on memory bandwidth will increase if
high levels of SIMD instructions can be achieved.
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1. INTRODUCTION
Some physics simulation applications have a single physics

module that consumes 95% or more of the run time. It is
fairly easy to port a code like this to a new system and tune
it so that it achieves good performance.

Other physics simulation applications have many physics
packages. They often have multiple options for a given type
of physics (e.g. radiation transport). These codes are used
to run a wide range of simulations and only a subset of the
physics packages are used in any given run. These codes are
run in production mode by users who are not developers of
the code. A code may have a hundred users at any given
time.

Multi-physics applications may have over a million lines of
code, are written by teams of 5-20 developers, use many ex-
ternal physics libraries, and have a lifetime that may exceed
20 years. The difficulties of writing and maintaining such
a code require a different approach than a single-physics
code. In particular, tuning for a specific system is not prac-
tical. Optimization efforts instead focus on characteristics
of a whole class of systems.

These codes typically solve a set of coupled partial differ-
ential equations (PDEs) for time-dependent fields on a grid

in three spatial dimensions. Variables like the temperature,
density, and velocity depend only on the spatial coordinates.
A large number of zones are often required due to the need
to resolve small features.

The radiation field also depends on the photon energy,
and 100-200 energy bins are often used. In terms of mem-
ory usage, the radiation field counts as 100-200 fields when
radiation transport is treated using a diffusion approxima-
tion.

In other cases, detailed angular dependence of the radi-
ation field is required. This is usually done using an SN

(discrete ordinates) method (see http://prod.sandia.gov/

techlib/access-control.cgi/2002/021778.pdf and refer-
ences cited therein). The radiation intensity is evaluated on
a set of discrete directions in an SN method. Resolving the
angular dependence may require 1000 directions. Simula-
tions with 100 thousand unknowns per zone are necessary
for some key problems, so large amounts of memory are re-
quired to hold the state of the simulation.

The equations are often solved using the method of opera-
tor splitting. This essentially means having one function call
(or one loop nest) for each term in the PDEs. There is a syn-
chronization between all MPI processes at the end of each
operator. This approach is referred to as ”bulk synchronous”
programming (see http://en.wikipedia.org/wiki/Bulk_synchronous_
parallel and references cited therein). This approach pro-
duces a lower ”high water mark” for memory usage than
would occur if all operators were evaluated simultaneously.

Bulk synchronous programs have loops which are much
simpler than if all terms were evaluated in a single very
large loop. This makes the code easier to write and main-
tain (it is easier to see the relationship between the code
and the mathematical operator). It also makes it easier for
multi-person teams to work on a code. Each team member
typically specializes in one or two areas of physics and does
not need to look at code related to other physics packages.
When a code contains over a million lines, it is important
for code development to be efficient.

Lawrence Livermore National Laboratory (hereafter LLNL)
has several multi-physics codes. They all have MPI paral-
lelism and a subset of the physics packages also have thread-
level parallelism. Running multi-physics codes effectively is
the main requirement for a new LLNL parallel computer.

The operators in LLNL multi-physics codes are applied
to full domains and the arrays they operate on are large
compared to cache. That means each operator pulls its in-
put arrays from DRAM into the cache. It then performs
calculations, and stores the updated arrays back to DRAM.



Most fields are used by multiple operators, so they may make
multiple round trips between DRAM and cache every time
step. Operators using iterative methods may pull arrays into
cache multiple times by themself. A system needs to have
enough memory bandwidth to fetch arrays in a time short
compared to the compute time for a single operator, not the
compute time for a whole time step.

This paper examines one such multi-physics code, HY-
DRA, and documents its relative demands for floating point
instructions, integer instructions, and memory bandwidth.
This paper does not consider interconnect bandwidth or la-
tency, although those characteristics are very important for
some simulations.

2. HYDRA CHARACTERIZATION
HYDRA [3] [2] is a multi-physics code that simulates a

variety of experiments conducted at the National Ignition
Facility (NIF) and other pulsed laser facilities. The laser
deposits a large amount of energy in a small volume, so HY-
DRA is focused on simulating the processes of high energy
density physics. HYDRA has packages to simulate radiation
transfer, atomic physics, hydrodynamics, laser propagation,
and a number of other physics effects. HYDRA has over
one million lines of code and includes both MPI and thread-
level (OpenMP and pthreads) parallelism. Figure 2 shows
the physics packages in HYDRA and their interconnections.
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Figure 2: HYDRA has many physics packages so
that it can simulate a broad range of experiments
performed using the National Ignition Facility Laser.

HYDRA performs simulations on grids made up of one or
more user blocks. User blocks usually correspond to major
components of the object being simulated. For example, the
capsule might be the first user block and the hohlraum wall
the second user block in a NIF simulation. User blocks have
curvilinear coordinates and the same topology as a regular
3D grid. This is sometimes referred to as an ”ijk grid”. There
must be a one-to-one match of faces on adjacent user blocks.
Within a user block, each zone is surrounded by exactly 26
other zones. This is also true for zones on a boundary face
between two user blocks. The number of neighboring zones
may be greater than or less than 26 for zones at the edge of
a user block (”enhanced” and ”reduced” connectivity). 2D

simulations are run by limiting the width in one direction to
a single zone.

HYDRA uses domain decomposition of the spatial grid
to implement MPI parallelism. User blocks are decomposed
into multiple ijk domains. All zones in a domain may be
accessed using three indices in HYDRA. Some other multi-
physics codes at LLNL use arbitrarily connected grids and
their zones are accessed by iterating through lists of zones
rather than indexing a 3D array.

All major physics packages also have thread-level paral-
lelism. In the case of hydrodynamics and some other pack-
ages, threading is over domains. If there are 4 hardware
threads available per MPI process, the user requests 4 do-
mains per process and one thread handles each domain. This
threading is implemented via OpenMP directives and is done
at such a high level that OpenMP thread synchronization
time is not an issue.

There are a number of important physics packages where
the computational cost of updating a zone varies by large
amounts across the full grid. This leads to a load imbalance
between the domains. A more complex threading approach
is required to deal with load imbalance.

The DCA package computes frequency-dependent opaci-
ties for all zones in the grid. The work in some zones is much
greater than in others, particularly when the matter is not in
local thermodynamic equilibrium. Putting simple OpenMP
directives on loops would not alleviate the load imbalance.
The DCA package therefore varies the number of OpenMP
threads per domain (based on timing information from the
last time step) so that the work per thread is roughly con-
stant. As an example, HYDRA might have 8 MPI domains
on an Intel Sandy Bridge node with 16 cores and 32 hard-
ware threads. If one domain has much more DCA work than
the other seven, it might be assigned 32 OpenMP threads
while the other domains have one OpenMP thread each.
This approach evens out the work per hardware thread on a
single node, but it does not help when there is a large imbal-
ance in the DCA work on different nodes. It is not possible
to dynamically move hardware threads from one process to
another on a BGQ system, so the load balancing in DCA is
turned off.

The laser and IMC (Implicit Monte Carlo) packages in
HYDRA use thread parallelism implemented using pthreads.
Each active process has a thread which handles all MPI mes-
sage passing, another thread handles all updates of the en-
ergy deposition array (recording the net transfer of energy
between the matter in a zone and the laser rays or IMC par-
ticles passing through it). If a process has a large number of
threads, it is possible to have more than one message passing
or deposition thread.

Each active process is assigned several domains either by
idling a portion of the MPI processes or by having multi-
ple domains per process. The time spent processing each
domain is recorded on every time step. At the start of the
next time step, a genetic algorithm shuffles domains around
until all active processes have roughly the same amount of
work when summed over all their domains. For example,
a process assigned a ”difficult” domain will also be assigned
several ”easy” domains. In practice, load balancing works
well with 4 or more domains per active process.

3. STUDIES ON BLUE GENE/Q
IBM’s Blue Gene/Q was chosen as the system on which



to gather performance data. The HPM library written by
Bob Walkup of IBM provides a simple way to gather the de-
sired hardware counters. The hardware counters on a BGQ
system are easy to understand due, in part, to the simple
in-order cores.

The main time step function of HYDRA was modified
to have HPM Start() and HPM Stop() calls around each
physics package. When the job terminates, HPM writes out-
put files containing key performance metrics for each node.
These include the number of cycles, integer instructions,
floating point instructions, and floating point operations for
each package. HPM also reports the number of L2 misses
for each node. An L2 miss triggers a load of a 128 byte
cache line on a read miss, so L2 cache misses may easily be
turned into the number of bytes fetched from DRAM. HPM
also reports the number of cache lines flushed to DRAM,
which allows the number of bytes written to DRAM to be
computed.

Table 1 reports performance metrics from BGQ runs of
several applications. HYDRA has already been described.
The pF3D kernels were extracted from pF3D, a code which
simulates laser-plasma interactions in NIF experiments. pF3D
simulations are often run with more than 100,000 cores.
pF3D has fewer packages than HYDRA, but has many more
performance critical loops than a single physics code. MCB
is a Monte Carlo radiation transport mini-app used in eval-
uating new computer systems. microK is a set of micro-
kernels which operate on vectors. microK is helpful in eval-
uating cache behavior and compiler optimizations. microK
results are reported for vectors which fit in on chip cache
memory and for vectors large enough that they must be
fetched from DRAM.

A BGQ chip has 16 cores available to the user. Each core
has 4 hardware threads. It requires at least two threads per
core to reach the maximum instruction issue rate. The max-
imum number of integer instructions per node per cycle is
16, as is the maximum number of floating point instructions.
The clock speed is 1.6 GHz and the chip uses the PowerPC
instruction set. The BGQ has a 4-wide SIMD floating point
unit and has a fused multiply-add (FMA) instruction. Float-
ing point instructions may perform from 1 to 8 floating point
operations.

The integer unit on the BGQ chip handles loads, stores,
integer arithmetic, address computations, and a number of
other instructions. Codes operating on arrays of floating
point numbers will issue a lot of integer instructions as they
load and store array elements and compute addresses.

The numbers in the tables are derived from hardware
counters on the BGQ chip. The ”packages” in the table
have from 1.3 to 8 floating point operations per instruction,
so they span nearly the full possible range. The BGQ com-
piler does a good job of generating FMA instructions. The
BGQ compiler has difficulty generating SIMD instructions
unless the code is annotated with BGQ-specific alignment
directives. The loops in microK are so simple that we added
directives and achieve a high SIMD fraction. The dot prod-
uct kernel, for example, issue mostly 4-wide FMA instruc-
tions. It is impractical to add those directives to a large
code, so the SIMD fraction for HYDRA and pF3D is essen-
tially zero. Some of the pF3D kernels deliver more than 2
FLOPs per instruction because they call IBM’s ”hand writ-
ten” sin, exp, etc. special functions. The compiler turns
the ”divide two vectors” kernel into a call to a vector di-

vide function. That function uses reciprocal approximation
followed by Newton-Raphson iteration. These instructions
can all be pipelined whereas the hardware divide instruction
cannot. The result is that the divide kernel has fairly high
computational intensity.

The microK run used one MPI process with 32 OpenMP
threads on a single node. The short vector case had 64K
elements per thread and the large vector case had 512K el-
ements per thread.

The microK results demonstrate the performance impact
of memory bandwidth. The short vectors run entirely out
of cache and the polynomial kernel achieves over 50% of
the peak floating point performance of the node. The large
vector run fetches its operands from memory and is memory
bandwidth limited in all cases (the bandwidth is 23 to 27
GB/s compared to the streams bandwidth of 28 GB/s).

The polynomial evaluation and divide vector micro-kernels
execute more floating point instructions than integer instruc-
tions. HYDRA, MCB, the rest of microK, and the pF3D ker-
nels all execute more instructions in the integer unit than
in the floating point. MCB performs a lot of its computa-
tions using integer arithmetic and has a very low fraction of
floating point instructions. HYDRA’s laser and multi-group
diffusion package have an even lower floating point fraction
than MCB.

All HYDRA tests were run with 64 processes running on
16 BGQ nodes (4 per node). The 64 hardware threads on a
node were equally divided amongst the 4 processes.

The hyd607 test problem performs a capsule-only simu-
lation of a NIF implosion experiment. Most of the time is
spent in the multi-group diffusion package (mtgrdif), with
roughly 10% of the time spent in electron heat conduction,
advection, and evaluation of the equation of state and opaci-
ties. mtgrdif has a high fraction of integer instructions. The
4 processes running on a node used a total of 1.7 GB of heap
memory. The radiation diffusion package transfers 14.7 GB
between DRAM and the processor during a time step, so
some arrays are read multiple times. The diffusion package
solves a large sparse matrix using an iterative scheme, so
arrays are naturally fetched multiple times if they are too
big to fit in cache.

The nifburn test problem performs a simulation of the cap-
sule and the surrounding hohlraum for a NIF experiment.
Domain replication was employed so that HYDRA could
load balance the laser and imc packages across processes.
Most of the time is spent in the laser ray trace and Im-
plicit Monte Carlo radiation transport packages. The hydro-
dynamics package, advection associated with ALE remaps,
electron heat conduction, and fusion burn combine to con-
sume roughly 15% of the run time.

The 4 processes running on a node in nifburn used a total
of 2.7 GB of heap memory. The imc package transfers 12.97
GB between DRAM and the processor during a time step,
so some arrays are read multiple times. The opacity array
has nzones times ngroups elements and is much larger than
the cache.As the Monte Carlo particles randomly wander
through the grid, they will pull the opacity array in multiple
times.

The tables include ratios of cache misses to lines read. A
cache line is 128 bytes on a BGQ system. HYDRA performs
most computations using double precision operands, so a
line holds 16 numbers. A stride one loop should have one
cache miss per L2 cache line read (the BGQ counts a cache



int inst per FPinst per FLOP per DRAM BW DRAM xfer Bytes per L2 miss
Package cycle cycle cycle (GB/s) GB inst per line

HYDRA hyd607
advect 5.74 1.90 1.59 3.21 2.13 0.230 1.31
eosOpac 1.70 0.48 1.32 0.46 0.146 0.124 2.17
econd 10.03 0.39 1.53 0.94 0.85 0.056 0.86
mtgrdif 8.74 0.25 1.58 0.85 14.65 0.058 0.73
HYDRA nifburn
hydro 4.38 2.21 1.62 1.89 0.31 0.148 1.58
advect 4.68 0.58 1.62 2.91 0.72 0.32 1.33
econd 12.66 0.95 1.66 0.32 0.10 0.014 2.89
laser 1.69 0.05 1.25 3.02 6.93 1.08 4.31
imc 1.06 0.21 1.60 1.29 12.93 0.577 5.27
burn 12.40 0.72 1.60 0.17 0.29 0.008 1.03
MCB
advance 4.52 0.18 1.31 0.25 4.92 0.033 1.01
pf3d kernels
couple4 4.02 1.47 2.81 1.46 12.32 0.112 0.45
absorbdt 4.61 1.13 1.77 1.21 1.23 0.114 0.43
acadv 3.56 1.15 2.256 1.87 9.67 0.191 0.28
advancefi 5.29 1.78 2.12 0.88 3.07 0.061 0.48
fft 3.02 1.88 1.30 2.64 1.79 0.303 0.48
microK small vector
sdot 8.16 1.90 8.00 1.49 0.03 0.040 0.38
poly 4.04 9.28 8.00 0.43 0.008 0.003 12.60
divide 5.90 8.94 5.60 0.0003 6e-6 3.5e-6 0.78
microK large vector
sdot 8.16 1.90 8.00 1.49 0.03 0.040 0.38
poly 4.04 9.28 8.00 0.43 0.008 0.003 12.60
divide 5.90 8.94 5.60 0.0003 6e-6 3.5e-6 0.78

Table 1: This table shows performance metrics for two HYDRA test problems. Metrics from three other
codes are shown for reference. HYDRA simulations used 64 MPI processes on 16 BGQ nodes (4 per node).
All HYDRA, pF3D, and MCB packages issue many more integer instructions than floating point instructions.
The ctr-chk polynomial and divide vector micro-kernels issue more floating point than integer instructions.
HYDRA, pF3D, and MCB use well below the node bandwidth of 28 GB/s. The micro-kernels are all memory
bandwidth limited for large vectors.

miss whether or not a prefetch occurred). A package which
accesses large arrays randomly might have up to 16 misses
per line. HYDRA’s Implicit Monte Carlo (imc) package has
a higher miss fraction than any other package in the table.
That is not surprising given that the particle list has photons
almost randomly scattered through the grid at the time the
performance counters were read.

All HYDRA packages run well under the peak floating
point performance. The performance bottleneck has not yet
been identified. The L2 cache latency is much larger on a
BGQ than for x86 64 systems, so that might be a problem.

3.1 Memory Usage
The hyd607 test problem uses a total of 1.7 GB of heap

memory per node. The radiation diffusion package transfers
14.7 GB between DRAM and the processor during a time
step, so some arrays are read multiple times. The diffu-
sion package solves a large sparse matrix using an iterative
scheme, so arrays are naturally fetched multiple times if they
are too big to fit in cache.

The nifburn test problem uses a total of 2.7 GB of heap
memory per node. The imc package transfers 12.97 GB be-
tween DRAM and the processor during a time step, so some
arrays are read multiple times. The opacity array has nzones
times ngroups elements and is much larger than the cache.As
the Monte Carlo particles randomly wander through the
grid, they will pull the opacity array in multiple times.

The data we have gathered does not establish whether
hyd607 and nifburn suffer a performance penalty due to
pulling arrays in from DRAM multiple times. There is a
lot of unused DRAM bandwidth, but DRAM latency might
be an issue. This is particularly true for the IMC where the
prefetch hardware won’t be able to figure out which zone
to fetch next. Adding SIMD instructions would increase
the pressure on memory bandwidth, but both nifburn and
hyd607 are running at well under one quarter of the memory
bandwidth.

Future systems will have a lower ratio of DRAM band-
width to peak floating point performance. If the ratio drops
too much relative to current systems, DRAM bandwidth
could become a performance constraint. Future systems
may have in package memory (IPM) with a bandwidth sig-
nificantly higher than off chip DRAM bandwidth. hyd607
and nifburn could both see a benefit from using IPM as
a cache because they currently pull arrays in from DRAM
multiple times per call.

IPM will probably have latencies only slightly less than off
chip DRAM. It will be hard to predict the possible benefits
of IPM without understanding the importance of latency.
That will be a key topic in our future performance analysis
work.

4. CONCLUSION
Our goal in this work was to investigate the performance



characteristics of HYDRA, a multi-physics simulation code
from LLNL. Integer and floating point operation counts,
bytes read and written from DRAM, and memory band-
widths were reported for several physics packages. We demon-
strated that, due to the operator splitting approach, the to-
tal memory traffic per time step between the processor chip
and DRAM is significantly greater than the total amount of
memory in use by HYDRA. All current multi-physics codes
at LLNL have this characteristic.
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